首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26073篇
  免费   294篇
  国内免费   925篇
测绘学   1441篇
大气科学   2125篇
地球物理   5005篇
地质学   12171篇
海洋学   1222篇
天文学   1841篇
综合类   2168篇
自然地理   1319篇
  2023年   7篇
  2022年   21篇
  2021年   48篇
  2020年   51篇
  2019年   32篇
  2018年   4821篇
  2017年   4088篇
  2016年   2709篇
  2015年   335篇
  2014年   186篇
  2013年   152篇
  2012年   1063篇
  2011年   2816篇
  2010年   2112篇
  2009年   2408篇
  2008年   1984篇
  2007年   2412篇
  2006年   119篇
  2005年   246篇
  2004年   451篇
  2003年   458篇
  2002年   290篇
  2001年   76篇
  2000年   78篇
  1999年   38篇
  1998年   48篇
  1997年   19篇
  1996年   15篇
  1995年   19篇
  1994年   12篇
  1993年   9篇
  1992年   9篇
  1991年   14篇
  1990年   16篇
  1989年   7篇
  1988年   6篇
  1987年   8篇
  1986年   4篇
  1984年   6篇
  1983年   7篇
  1982年   6篇
  1981年   23篇
  1980年   20篇
  1978年   3篇
  1976年   6篇
  1974年   5篇
  1973年   4篇
  1972年   3篇
  1956年   3篇
  1950年   2篇
排序方式: 共有10000条查询结果,搜索用时 16 毫秒
991.
Coastal aquifers are usually exposed to saltwater intrusion. Therefore, groundwater extracted from these aquifers should be regulated considering their dimensions and effective parameters. In this paper, optimum discharge from a large number of exploitation wells is evaluated according to variations of width, length, and anisotropy coefficient in the Qom aquifer near the salt lake in central Iran. First, the wells are divided into clusters to decrease the number of decision variables. Then, the location and discharge from each cluster is obtained using SEAWAT and charged system search (CSS) simulation–optimization model with the assumption of three-dimensional variable density flow. The maximum discharge considering various anisotropy rates is computed based on different values of lengths and widths of the aquifer. Finally, an M5-tree model is trained using the obtained samples to derive a linear relationship between input and output data. Based on the results, for various ranges of width and length of an aquifer with impermeable boundaries, different linear equations for optimum discharge are obtained. Also, it was found that for an aquifer with a small width, the critical discharge is a function of the length while the effect of the boundaries is negligible. Sensitivity analysis of the anisotropy coefficient reveals that with increasing the anisotropy rate, thickness and slope of the transition zone decrease and as the maximum discharge increases consequently. However, the sensitivity of the discharge to anisotropy rate is not remarkable. A comparison between the results of this study with those of the analytical method based on sharp interface assumption is carried out. For the critical condition, the best agreement between analytical equation (\(\overline {L} =0.87\overline {W} +0.62\)) and proposed method (\(\overline {L} =0.83\overline {W} - 1.41\)) is achieved for the anisotropic aquifer when the 50% isochlor is assumed as the measure of salt water intrusion.  相似文献   
992.
The groundwater (GW) makes an important part of a region runoff. GW bodies playing the role of accumulating reservoirs regulate the GW discharge enabling the river flow to have more uniform long-term distribution. Along with other important advantages, the GW offers the users stable water abstraction rate independent from the recharge rate. The GW recharge quantification belongs to the uneasy tasks in the water resource management. Applying the conventional methods needs multiyear observation records of the variation of the groundwater body (GWB) characteristics. The employment of hydrology models avoids that necessity but requires great amount of data related to the soil hydraulic properties, the land topography and cover of the GWB watershed and long-term records of the climatic effects. The paper presents an introduction of the mathematical model CLM3 into the GW recharge estimation problem. It is a complex and advanced model with adequate interpretation of the water-related processes in the soil and on the land surface under atmospheric effects. The input is available from NCEP/NCAR reanalysis atmosphere data and the International Geosphere-Biosphere Program (IGBP) data base. The model is applied to GW recharge assessment of the Bulgarian Danube district for the year 2013. The obtained monthly and yearly total district values and the areal distribution of the infiltration intensity are matched to the existing field observation-based estimates. The study shows that the CLM3 model approach leads to encouraging results. The method comes very useful with GWB lacking regime observation data as well as for GW recharge prognostic assessments under climatic scenarios.  相似文献   
993.
Accumulation of heavy metals in soil media is considered as a serious environmental problem, which is hazardous to human and animal health. There have been several methods for the removal of these toxic metals. One of the commonly used methods is the use of plants, especially ornamental plants to remove heavy metals from soils. In this regard, the study has been conducted on the soils contaminated with Mn, Pb, Ni, and Cd using factorial experiment in a completely randomized design with two factors including three types of soil (soil A for the highest level of contamination, B for the lowest level of pollution, and C for the non-contaminated soil) with different contamination levels as well as three types of ornamental plants, gladiolus, daffodils, and narcissus with four replications. In another part of the study, soil A and gladiolus were used in a completely randomized design with three replications, and also three types of fertilizers, such as municipal solid waste compost, triple superphosphate and diammonium phosphate, were added to this soil. In addition, the availability of heavy metal was studied in gladiolus as influenced by the application of organic and chemical fertilizers. The results showed that heavy metal pollution caused reduction in the dry weight of gladiolus and tulips compared to the control sample, while there was no significant effect of pollution on the dry weight of narcissus. The uptake of Mn, Pb, Ni, and Cd by all three plants has been increased with enhancing the pollution levels of heavy metals. The highest concentration of Pb in the shoots of plants was observed in soil A with an average amount of 61.16 (mg kg?1), which revealed a substantial difference relative to the treatment of soil B and C. The most and least amount of Ni in the plants shoots were related to soil A and soil C with an average of 2.35 and 0.89 mg kg?1, respectively. The uptake of Pb by shoots of all three plants was nearly similar to each other, while more Pb was absorbed by the bulbs of gladiolus compared to the bulbs of other plants. Increment in the pollution levels led to the decrement in enrichment factor (EF); however, there was no effect of pollution levels on EF of Mn and Pb. Moreover, there was no effect of increasing pollution levels on translocation factor of these elements. In gladiolus, after application of organic and chemical fertilizers, it was observed that the concentration of heavy metals was far more in the bulbs compared to the shoots. In conclusion, the cultivation of these ornamental plants is highly recommended due to not only their decorative aspect but also their ability for bioremediation as well as being economical.  相似文献   
994.
CO2 geological storage is a transitional technology for the mitigation of climate change. In the vicinity of potential CO2 reservoirs in Hungary, protected freshwater aquifers used for drinking water supplies exist. Effects of disaster events of CO2 escape and brine displacement to one of these aquifers have been studied by kinetic 1D reactive transport modelling in PHREEQC. Besides verifying that ion concentrations in the freshwater may increase up to drinking water limit values in both scenarios (CO2 or brine leakage), total porosity of the rock is estimated. Pore volume is expected to increase at the entry point of CO2 and to decrease at further distances, whereas it shows minor increase along the flow path for the effect of brine inflow. Additionally, electrical conductivity of water is estimated and suggested to be the best parameter to measure for cost-effective monitoring of both worst-case leakage scenarios.  相似文献   
995.
Drought monitoring is a key topic in environmental monitoring and assessment although there is still a need to determine the correlation between drought monitoring indices and remote sensing products. We analyzed the correlation between the self-calibrating Palmer Drought Severity Index (sc_PDSI), the Standardized Precipitation Index and the Standardized Precipitation Evapotranspiration Index (SPEI) and terrestrial water storage monitored through the Gravity Recovery and Climate Experiment (GRACE) on a monthly timescale from 2002 to 2015 in China. As a consequence of anomalies in the soil water budget, the highly significant correlation between the sc_PDSI and the GRACE satellite-observed terrestrial water storage suggested that these two datasets are the most suitable for use in monitoring droughts. In comparing the three drought indices, the sc_PDSI was introduced as a means of drought monitoring in the Yangtze, Pearl, Huaihe, Southeast and Songhua River Basins, whereas the SPEI was found to be more applicable to other major river basins, such as the Inland River Basin. These diverse spatial behaviors are caused by the differences between the hydrological droughts characterized by these three drought indices.  相似文献   
996.
Changing atmospheric conditions often result in a data distribution shift in remote sensing images for different dates and locations making it difficult to discriminate between various classes of interest. To alleviate this data shift issue, we introduce a novel supervised classification framework, called Classify-Normalize-Classify (CNC). The proposed scheme uses a two classifier approach where the first classifier performs a rough segmentation of the class of interest (COI) in the input image. Then, the median signal of the estimated COI regions is subtracted from all image pixels values to normalize them. Finally, the second classifier is applied to the normalized image to produce the refined COI segmentation. The proposed methodology was tested to detect deforestation using bitemporal Landsat 8 OLI images over the Amazon rainforest. The CNC framework compared favorably to benchmark masks of the PRODES program and state-of-the-art classifiers run on surface reflectance images provided by USGS.  相似文献   
997.
This paper presents a new method that integrates gradient and residual values for rank ordering of stations in a monitoring network (GaRiRO). The innovation is derived from the fact that the parameter (dependent variable) gauged through the monitoring network is modelled using independent variables that influence its measured quantity. And the dependent variable exhibit non-stationary spatial gradient with respect to the independent variables, particularly in complex terrain. GaRiRO technique was developed to prioritize the rain gauge stations for optimizing the existing network and selection of the best locations for relocation or installation of gauges. Although initially aimed to assist hydrologists with a ranking scheme for rain gauge stations, it can be applied to any environmental, meteorological or hydro-meteorological monitoring network. The new procedure is based on deriving gradient and residual value at each station by modeling the spatial relationship of dependent-independent variable using geographically weighted regression (GWR) technique. For the prospective stations with no record, the gradient value is estimated using GWR model and the residual value is derived from the residual map generated by applying kriging technique on the residual derived at all gauged locations. The method combines the decision factor with analytical strength of GIS for prioritizing the stations which results in limited number of trials for installation or relocation of gauges to yield optimized network configuration.  相似文献   
998.
Air pollution is one of the most important problems in the new era. Detecting the level of air pollution from an image taken by a camera can be informative for the people who are not aware of exact air pollution level be declared daily by some organizations like municipalities. In this paper, we propose a method to predict the level of the air pollution of a location by taking an image by a camera of a smart phone then processing it. We collected an image dataset from city of Tehran. Afterward, we proposed two methods for estimation of level of air pollution. In the first method, the images are preprocessed and then Gabor transform is used to extract features from the images. At the end, two shallow classification methods are employed to model and predict the level of air pollution. In the second proposed method, a Convolutional Neural Network(CNN) is designed to receive a sky image as an input and result a level of air pollution. Some experiments have been done to evaluate the proposed method. The results show that the proposed 9 method has an acceptable accuracy in detection of the air pollution level. Our deep classifier achieved accuracy about 59.38% which is 10 about 6% higher than traditional combination of feature extraction and classification methods.  相似文献   
999.
Viewshed analysis is widely used in many terrain applications such as siting problem, path planning problem, and etc. But viewshed computation is very time-consuming, in particular for applications with large-scale terrain data. Parallel computing as a mainstream technique with the tremendous potential has been introduced to enhance the computation performance of viewshed analysis. This paper presents a revised parallel viewshed computation approach based on the existing serial XDraw algorithm in a distributed parallel computing environment. A layered data-dependent model for processing data dependency in the XDraw algorithm is built to explore scheduling strategy so that a fine-granularity scheduling strategy on the process-level and thread-level parallel computing model can be accepted to improve the efficiency of the viewshed computation. And a parallel computing algorithm, XDraw-L, is designed and implemented taken into account this scheduling strategy. The experimental results demonstrate a distinct improvement of computation performance of the XDraw-L algorithm in this paper compared with the coarse-partition algorithm, like XDraw-E which is presented by Song et al. (Earth Sci Inf 10(5):511–523, 2016), and XDraw-B that is the basic algorithm of serial XDraw. Our fine-granularity scheduling algorithm can greatly improve the scheduling performance of the grid cells between the layers within a triangle region.  相似文献   
1000.
Earth System Science (ESS) observational data are often inadequately semantically enriched by geo-observational information systems to capture the true meaning of the associated data sets. Data models underpinning these information systems are often too rigid in their data representation to allow for the ever-changing and evolving nature of ESS domain concepts. This impoverished approach to observational data representation reduces the ability of multi-disciplinary practitioners to share information in a computable way. Object oriented techniques that are typically employed to model data in a complex domain (with evolving domain concepts) can unnecessarily exclude domain specialists from the design process, invariably leading to a mismatch between the needs of the domain specialists, and how the concepts are modelled. In many cases, an over simplification of the domain concept is captured by the computer scientist. This paper proposes that two-level modelling methodologies developed by health informaticians to tackle problems of domain specific use-case knowledge modelling can be re-used within ESS informatics. A translational approach to enable a two-level modelling process within geo-observational sensor systems design is described. We show how the Open Geospatial Consortium’s (OGC) Observations & Measurements (O&M) standard can act as a pragmatic solution for a stable reference-model (necessary for two-level modelling), and upon which more volatile domain specific concepts can be defined and managed using archetypes. A rudimentary use-case is presented, followed by a worked example showing the implementation methodology and considerations leading to an O&M based, two-level modelling design approach, to realise semantically rich and interoperable Earth System Science based geo-observational sensor systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号